SCI医学科研助手
生信分析-Meta分析-基础实验

超友好的TCGA数据下载方式!

TCGA数据库可以说是研究分析中必不可少的一部分,数据目前在官网的下载方式虽说不难,但是整合起来还是叫人头大!不善于编程的小编被他整整折磨了一天也可以说是毫无进展!!!在摔电脑的边缘疯狂试探……

可是小编不能放弃,在崩溃的同时到处寻找解决办法,于是找到了一个R包–TCGAbiolinks,它是GDC官方推荐了一款第三方工具,通过GDC官方API下载数据,保证数据的及时性和准确性,同时也提供数据整理、聚类分析、差异分析、富集分析等功能。看上去还不错,小编就自己对下载数据初步尝试了一番~


首先是TCGAbiolinks的安装和加载,TCGAbiolinks对于R的版本要求较高,建议在3.4以上的版本进行

#安装
source("https://bioc.ism.ac.jp/biocLite.R")
biocLite("TCGAbiolinks")
#加载
library(TCGAbiolinks)

1、表达谱数据

#可以下载三种形式的数据,如"HTSeq - Counts","HTSeq - FPKM-UQ","HTSeq - FPKM"
query <- GDCquery(project = "TCGA-GBM",##对应癌症
                  data.category = "Transcriptome Profiling",
                  data.type = "Gene Expression Quantification",
                  workflow.type = "HTSeq - FPKM-UQ"##对应数据形式"HTSeq - Counts","HTSeq - FPKM"
                  )
GDCdownload(query)
data <- GDCprepare(query)

2、甲基化数据

#"Illumina Human Methylation 450","Illumina Human Methylation 27"
query<- GDCquery(project = "TCGA-GBM",
                 legacy = TRUE,data.category = "DNA methylation",
                 platform ="Illumina Human Methylation 450")
GDCdownload(query)
data<-GDCprepare(query)

#甲基化idat文件
query <- GDCquery(project = "TCGA-GBM",
                  data.category = "Raw microarray data",
                  data.type = "Raw intensities",
                  experimental.strategy = "Methylation array",
                  legacy = TRUE,
                  file.type = ".idat",
                  platform = "Illumina Human Methylation 450")
GDCdownload(query)
data<-GDCprepare(query)

3、miRNA

query = GDCquery(project = "TCGA-GBM",
                 data.category = "Transcriptome Profiling",
                 data.type = "miRNA Expression Quantification")
GDCdownload(query)
data<-GDCprepare(query)

4、拷贝数变异

query <- GDCquery(project = "TCGA-GBM",
                  data.category = "Copy Number Variation",
                  data.type = "Copy Number Segment")
GDCdownload(query)
data<-GDCprepare(query)

5、临床数据

clinical <- GDCquery_clinic(project = "TCGA-GBM",
                            type = "Clinical",
                            save.csv=TRUE##可以直接写出文件
                            )
select<-c("submitter_id","gender","year_of_birth","days_to_death",
          "vital_status","tumor_grade","tumor_stage")##可以根据列名选择部分输出
clinical_select<-clinical[,select]
write.table(clinical_select,file = "GBM_clinical.txt",sep="t",row.names=FALSE)


对于表达谱、甲基化谱、miRNA、拷贝数变异数据,通过上述的操作都可以获得data进行后续分析,当然,我们也可以把这些数据进行保存

#以表达谱为例进行演示,其他同理
library(TCGAbiolinks)
library(SummarizedExperiment)
library(stringr)
setwd("D:/gdc/")#设置工作路径
query <- GDCquery(project = "TCGA-GBM",
                  data.category = "Transcriptome Profiling",
                  data.type = "Gene Expression Quantification",
                  workflow.type = "HTSeq - FPKM-UQ")
GDCdownload(query)
expdat <- GDCprepare(query)
matrix=assay(expdat)
namecol<-substring(colnames(expdat),1,16)#将"TCGA-14-0736-02A-01R-2005-01"转化成"TCGA-14-0736-02A"这样的形式
colnames(matrix)<-namecol
write.table(matrix,file = "GBM_expression_FPKM-UQ.txt",sep="t")#输出文件

这样我们就可以得到类似下图形式的数据

TCGAbiolinks还可以进行对数据进一步的分析,比如差异分析、富集分析等,待小编深入学习下再来介绍~


2019年,遇见更好的自己


 收藏 (0) 打赏

您可以选择一种方式赞助本站

支付宝扫一扫赞助

微信钱包扫描赞助

未经允许不得转载:医学SCI科研之家 » 超友好的TCGA数据下载方式!

评论 抢沙发

  • QQ号
  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

学习、交流、分享

生信分析交流群综合科研交流群

登录

忘记密码 ?

切换登录

注册